Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]				
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi				
CRM08	Rev 1.8	CSE	15/7/2021	

CONTINOUS INTERNAL EVALUATION- 3

Dept: CSE	Sem / Div:4 th (A&B)	Sub:Design and Analysis of	S Code:18CS42	
		Algorithms		
Date:04/08/2021	Time:3-4.30 PM	Max Marks: 50	Elective:N	
Note: Answer any 2 full questions, choosing one full question from each part.				

_

	Q		Questions		Marks	RBT	COs
-	IN	PART A					
1	a	Vrite Bellman-ford Algorithm. Apply same to the graph given below, o find shortest path to all the vertices from vertex 1			12	L3	CO4
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
	b Solve the following TSP using dynamic programming and write the			13	L3	CO4	
		Complexity. $\begin{bmatrix} 0 & 10 & 1 \\ 5 & 0 \\ 6 & 13 \\ 8 & 8 \end{bmatrix}$	$\begin{bmatrix} 5 & 20 \\ 9 & 10 \\ 0 & 12 \\ 9 & 0 \end{bmatrix}_{\text{starting city 1}}$				
OR							
2	2a	^a Design a 3-stage system with device types A, B, C whose costs are 30, 15, 20 and reliability are 0.9, 0.8, 0.5 respectively. Budget available is 105. Design a system with highest reliability.			12	L4	CO4
	b	Solve the following instance of 0/1 knapsack problem using dynamic programming. Knapsack capacity is W=5 and n=4			13	L3	CO4
		Item	Weight	Value			
		1	2	12			
		2	1	10			
		3	3	20			
		4	2	15			
PART B							
3	8 a	a Give the problem statement of n-queens problem. Explain the solution for 4-queens problem using state space tree.			10	L2	CO5
	b Let $w = \{3, 5, 6, 7\}$ and $m = 15$. Find all possible subsets of w that sum to m. Draw the state space tree that is generated.		5	L1	CO5		

Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by ATCTE New Delhi				
CRM08 Rev 1.8 CSE	15/7/2021		1	
CONTINOUS INTERNAL EVALUATION-	<u>3</u>			
c Define Graph coloring problem. Apply backtracking to solve the 3-coloring problem for the graph given below.	10	L3	CO5	
OR		i		
4 a Apply best-first branch and bound method for the following instance of assignment problem to find the optimal solution. Give the complete state space tree Job 1 Job 2 Job 3 Job 4 9 2 7 8 6 4 3 7 5 8 1 8 7 6 9 4 Person a Person b Person c Person d	10	L3	CO5	
 b Explain the following with examples a. Class P Problems b. Class NP Problems 	5	L2	CO5	
c Apply the branch-and-bound algorithm to solve the travelling sales man problem for the following graph. Start city is a . Give the state space tree.	10	L3	CO5	

HOD Ajbro

Page: 2